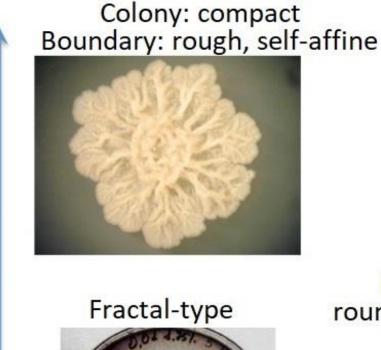
The geometry of bacteria colonies II

Self-affine surfaces, branching morphology and models for individual bacteria

October 9, 2017

"Summary" of the morphology diagrams



Round-shape

Dense branching within a round-shape colony (not fractal)

Soft gel

Dry gel

Nutrient concentration

1 / (agar concentration)

Compact morphology

Abundant nutrient \rightarrow compact colony Either smooth or irregular perimeter

Soft gel \rightarrow - Bacteria can move

- Takes a few hours to migrate across the dish
- Random walk trajectory
 - → Inter-cellular interactions are negligible
 - ➡ Time dependence of the bacterial density *p* can be described by the Fisher-Kolmogorov equation

Fisher-Kolmogorov equation Starts as a small spot, then diffuses due to random translation and multiplication

 $\frac{\partial \rho}{\partial t} = D_{\rho} \nabla^2 \rho + f(\rho, c)$

Notations:

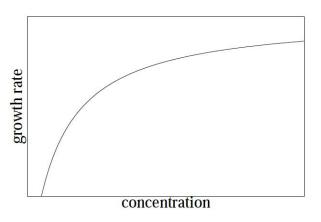
- $\rho = \rho(\vec{r}, t)$: bacterial density
 - : Diffusion coefficient (can be determined from the (measurable) squared displacements $d^2(t)$ of the individual cells during a time period t as : $\overline{d^2(t)} = 2D_\rho t$

where the overline means averaging among the cells)

- : Partial derivative (with respect of the space coordinates)
- $f = f(\rho, c)$: Bacterial multiplication
 - : Nutrient concentration

Fisher-Kolmogorov equation – cont.

Dependency on c : Hyperbolic manner



R(c)= for small c values R~c for big c values R is const.

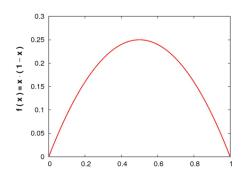
Some amount is needed for maintaining the intracellular biochemical process

Dependency on ρ :

When ρ is small, cells proliferate with a fixed rate

 \rightarrow exponential growth

In practice, even with unlimited nutrient supply, there's a certain threshold ρ^* for the density (e.g., accumulation of toxic metabolites)



 $f(\rho, c) = R(c) * \rho(1 - \rho)$

Numerical solution of the Fisher-Kolmogorov equation in 1 D

$$\frac{\partial \rho}{\partial t} = D_{\rho} \nabla^2 \rho + R(c) \rho (1-\rho)$$

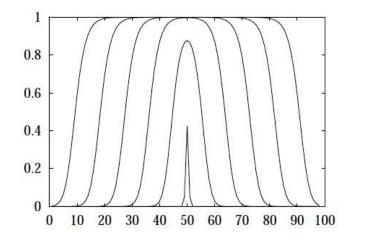


Figure 4.9: Typical result of the numerical integration of the Fisher equation (4.8) starting from a localised perturbation ($D_{\varrho} = 1$, $f(x) = x - x^2$, i.e., r =1). The $\varrho(x,t)$ curves are plotted for t =0, 5, 10, 15, 20 and 25. The domain grows with a stationary speed of v = 2.

Numerical solution: the growing domain of the colony expands with a constant speed $v \approx v_*$ where

$$v_* = 2\sqrt{RD_{
ho}}$$

6

Solution of the Fisher-Kolmogorov equation in 2D

The Fisher-KPP equation.mp4

https://www.youtube.com/watch?v=IjKYE5-RhHc

Numerical solution of the Fisher-Kolmogorov equation in 1 D – cont.

- We had: the colony expands with const speed $v \approx v_* = 2\sqrt{RD_{\rho}}$
- To calculate v, we rewrite the expanding domain of the bacteria density $\rho(x,t) \sim 1$ into a moving frame of reference as $\tilde{\rho}(u,t) = \rho(x,t)$,

where u = x - vt, v > 0, $\rho(-\infty)=1$ and $\rho(\infty)=0$

- Inserting $\tilde{\rho}(u, t)$ into $\frac{\partial \rho}{\partial t} = D_{\rho} \nabla^2 \rho + R(c) \rho (1 \rho)$, we obtain $\frac{\partial \tilde{\rho}}{\partial t} = D_{\rho} \tilde{\rho}'' + v \tilde{\rho}' + f(\tilde{\rho}) \quad \text{(where ' is differentiation with respect to } u\text{)}$
- This can be solved analytically: gives stationary solution for any value of $v \geq v_*$.
- "velocity selection problem"
 - not unusual in equations describing pattern formation.

Compact morphology

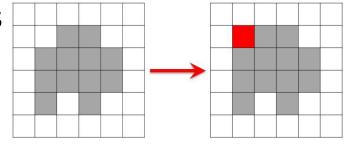
Abundant nutrient \rightarrow compact colony

Either smooth or irregular perimeter

- Dry gel and/or un-motile bacteria
 - Bacteria exert mechanical pressure on their environment (in order to expand to their preferred size)
 - Inter-cellular interactions
 - Modified Fisher-Kolmogorov equation
 - Irregular (self-affine) surface

The formation of self-affine boundaries – the Eden model

- One of the earliest method to generate self-affine objects (1961)
- Cells grown on a lattice
- One single rule for growing the colony:
 - In each step, one of the lattice sites next to the populated areas is chosen randomly and occupied.



- Or: in each time step, a randomly chosen (non-motile) bacterium proliferates.
- Primitive, but universal model

Eden-model

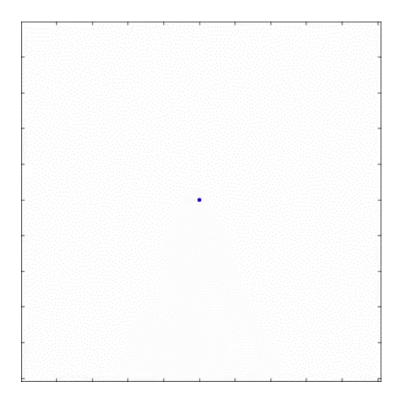
A typical colony in the Eden model grown on a strip of 256 lattice units.

• Initial step:

1 occupied cell

- Variants:
 - Each position with same probability
 - Higher number of occupied neighbors increase the probability
- Variants of the model leave the statistical features of the developing clusters invariant in the asymptotic limit.

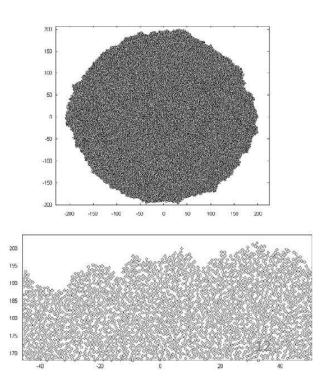
Simulations of the Eden model in 2D



https://youtu.be/hluvLTwMFOs

The lattice can destroy the rotational symmetry

Continual model is more realistic



Summary of the Eden model

- The surface contains "overhangs"
- Basic assumptions:
 - The units can not move (no "diffusion")
 - Multiplication on the surface
- The model is simple but can be applied to many phenomena – "universality"
- The result is a self-affine surface
- KPZ model
 - The time evolution of the profile of a growing interface
 - Kardar, Parisi, Zhang: Dynamic scaling of growing surfaces.
 Physical Review Letters (1986)

The Kardar-Parisi-Zhang (KPZ) equation

$$\partial_t h = \nu \partial_x^2 h + \frac{\lambda}{2} (\partial_x h)^2 + u + \eta$$

- *h* : Height of the surface
- ∂_t : Partial derivative with respect to time
- ∂_x : Partial derivative with respect to the space coordinate x; (∂_x^2 : second derivative)
- v : surface tension coefficient (*nu*)
- u : growth speed, perpendicular to the surface
- η : uncorrelated noise (stochastic)

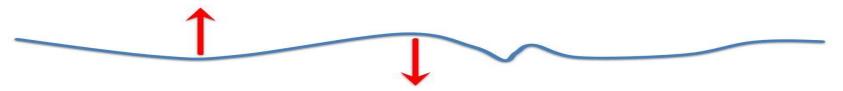
The KPZ step-by-step

Speed of vertical growth:

 $\partial_t h(x,t)$

Components:

- 1. Surface tension term $v \partial_x^2 h$
 - 2^{nd} derivative negative \rightarrow local max ("top of a hump")
 - 2^{nd} derivative positive \rightarrow local min ("bottom of a swale")
 - Tends to smoothen the interface
 - Does not permit discontinuities (large jumps) in h
 - ν : surface tension coefficient



 $\partial_t h = \nu \partial_x^2 h + \frac{\lambda}{2} (\partial_x h)^2 + u + \eta$

- $h\,$: Height of the surface
- ∂_t : Partial derivative with respect to time
- ∂_x : Partial derivative with respect to the space coordinate *x*; (∂_x^2 : second derivative)
- ν : surface tension coefficient (*nu*)
- u_{-} : growth speed, perpendicular to the surface
- η : uncorrelated noise (stochastic)

The KPZ step-by-step

Speed of vertical growth: $\partial_t h(x, t)$ 2nd component: makes the surface lumpy

$$\partial_t h = v \partial_x^2 h + \frac{\lambda}{2} (\partial_x h)^2 + u + \eta$$

- *h* : Height of the surface
- ∂_t : Partial derivative with respect to time
- ∂_x : Partial derivative with respect to the space coordinate x; (∂_x^2 : second derivative)
- ν : surface tension coefficient (*nu*)
- u_{-} : growth speed, perpendicular to the surface

 $\cos \varphi$

())

Δh

 η : uncorrelated noise (stochastic)

$$\Delta h = \frac{u \cdot \Delta t}{\cos \varphi} = u \cdot \Delta t \left(\frac{1}{\cos \varphi}\right) = u \cdot \Delta t \sqrt{1 + tg^2 \varphi}$$
$$\approx u \cdot \Delta t \left(1 + \frac{tg^2 \varphi}{2}\right) = u \cdot \Delta t + \frac{u \cdot \Delta t}{2} tg^2 \varphi \approx$$

$$\approx u \cdot \Delta t + \frac{u \cdot \Delta t}{2} (\partial_x h)^2$$

During a small Δt period of time the growth of the surface:

$$\frac{\Delta h}{\Delta t} \approx u + \frac{u}{2} (\partial_x h)^2$$

Due to other effects $\frac{u}{2} \rightarrow \frac{\lambda}{2}$ (more general equation) 1D \rightarrow 2D

• $x \rightarrow r$

$$\bullet \quad \partial_x \to \vec{\nabla}$$

$$1 + tg^{2}x = \frac{1}{\cos^{2}x};$$

if $\varepsilon <<1$, then $\sqrt{1 + \varepsilon} \approx 1 + \frac{\varepsilon}{2}$
if $\varphi \ll 1$, then tg $(\varphi) \approx \partial_{x}h$

 \approx

16

φ

The KPZ step-by-step $1D \rightarrow 2D$

$$\partial_t h = \nu \partial_x^2 h + \frac{\lambda}{2} (\partial_x h)^2 + u + \eta$$

- *h* : Height of the surface
- ∂_t : Partial derivative with respect to time
- ∂_x : Partial derivative with respect to the space coordinate *x*; (∂_x^2 : second derivative)
- ν : surface tension coefficient (*nu*)
- u_{\parallel} : growth speed, perpendicular to the surface
- η : uncorrelated noise (stochastic)

$$\partial_t h(\vec{r},t) = \nu \cdot \vec{\nabla}^2 h(\vec{r},t) + \frac{\lambda}{2} \left(\vec{\nabla}h\right)^2 + u + \eta(\vec{r},t)$$

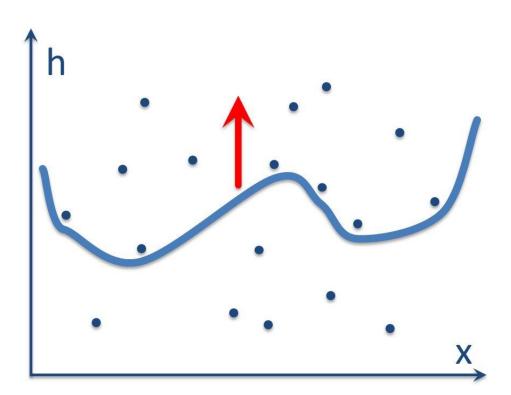
- Smoothening component (surface tension)
- Roughening
- noise: $\eta = \eta(\vec{r}, t)$: stochastic (=non-deterministic), uncorrelated in space and time

Comments:

- In case of uncorrelated $\eta(ec{r},t)$ noise the resulting surface is self affine
- In this case (and in the Eden model) the roughness exponent H=1/2, in contrast to experiments, where H≈0.7, ..., 0.8
- Reason: in the KPZ the noise is uncorrelated in time (\leftrightarrow reality!) 17

- Uncorrelated noise (in time):
 - If the noise is $\eta(\vec{r}, t)$ at the position \vec{r} at time t, then the noise is *"independent"* of $\eta(\vec{r}, t)$ at the same place, at time $t + \Delta t$.
- In other words:
 - If the spreading of the colony sticks at time t at position \vec{r} due to the local inhomogeneity $\eta(\vec{r}, t)$ of the surface (gel), then at the same position, Δt later, the noise would be independent (uncorrelated), that is, the surface would move on.
- In contrast, the reality is that
 - Such noises are often constant in time
 - The colony moves in an inhomogeneous medium, in which the inhomogeneity is constant in time
 - The noise "quenches" into the medium. "quenched noise"

- If the noise is constant (and fixed) in time:
 - If the spread of the colony surface sticks at a given point \vec{r} , then this "halt" can be extensive in time, since the media does not change.
 - Results in a surface proceeding in a hoping/jiggling manner (points are blocks).



- Defining the $\eta(\vec{r}, t)$ quenched noise:
 - Let us consider a $\Delta(u)$ function with the following properties:
 - If u is close to 0, then $\Delta(u) \cong 1$ (in a small, finite interval), and
 - Everywhere else $\Delta(u)=0$.
 - a "blurred" Dirac-delta
 - $\eta(\vec{r},t) \coloneqq 2D\tilde{\eta}(\vec{r},h(\vec{r},t))$
 - $\tilde{\eta}$ is normalized noise
 - whose spatial autocorrelation is $C_{\tilde{\eta}}(\vec{r}, \vec{r'}) = \Delta(|\vec{r}|)\Delta(|\vec{r'}|)$

- That is, correlated in a very small spatial interval

- D : average magnitude of the noise as $\sqrt{C_{\widetilde{\eta}}(0,0)} = \sqrt{2D}$
- We incorporate this quenched noise into the KPZ, we get: $\partial_t h(\vec{r},t) = \nu \cdot \vec{\nabla}^2 h(\vec{r},t) + \frac{\lambda}{2} (\vec{\nabla}h)^2 + u + \eta(\vec{r},h(\vec{r},t))$

$$\partial_t h(\vec{r},t) = \nu \cdot \vec{\nabla}^2 h(\vec{r},t) + \frac{\lambda}{2} \left(\vec{\nabla}h\right)^2 + u + \eta(\vec{r},h(\vec{r},t))$$

 By "appropriate" choice of the time and length units the parameters λ, ν and u can be transformed out

– the $\lambda = v = u$ case:

$$\partial_t h = \vec{\nabla}^2 h + \frac{1}{2} (\vec{\nabla} h)^2 + 1 + \eta = \vec{\nabla}^2 h + \sqrt{1 + (\vec{\nabla} h)^2} + \eta$$

(where the magnitude of η is $\sqrt{\eta\eta} = \sqrt{C_{\tilde{\eta}}(0,0)} = \sqrt{2D}$)

- Two extreme cases:
 - *1.* $D \ll D_* \sim 1$
 - 2. $D > D_* \sim 1$

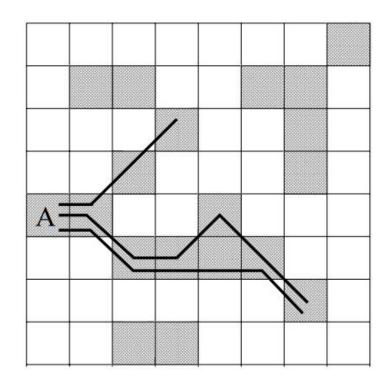
KPZ with small quenched noise

- First Case: $D \ll D_* \sim 1$
 - The interface is never pinned, advances with a steady velocity
 - Fluctuating noise with some finite temporal correlations
 - The standard KPZ can be applied
 - Resulting interfaces with H=1/2.
 - Experimental support: Colonies grown on soft agar gel (small pinning effect) showed standard KPZ-like behavior with surface characterized by H=1/2.

- Second Case: $D > D_* \sim 1$
 - The interface is pinned at some certain points, for an extended period of time (until the neighboring segments pull it out)
 - If the density of the pinning points is high enough, then the propagation of the whole surface can be blocked.
 - The shape of the frozen colony is determined by the distribution of these pinning sites (and independent of the growth dynamics).
 - The surface roughening can be mapped onto a directed percolation problem:
 - Finding directed and connected paths
 - >Let us consider a **lattice** instead of the continuous case
 - (discrete model, regarding both h and the location (x,y))

Directed percolation

- 1. Let us define each lattice site as
- "pinning" with a probability 0<p<1.
 (gray squares)
- 3. We start from one end of the panel
- On the pinning sites we can move ahead, up and down (but not backwards)
- 5. Do we reach the other end of the board?



- The chain of the pinning sites define a directed percolation cluster (if it exists).
 - Complete blocking of the interface propagation appears when there is a directed, connected path (a directed percolation cluster)
 - The propagation stops along these clusters

Correlation lengths of directed percolation clusters

- DPC is characterized by two correlation length:
 - 1. Parallel to the interface (to the preferred direction) ξ_{\parallel}
 - 2. Perpendicular to the interface (to the preferred direction) ξ_{\perp}

• There is a critical probability p_c (defining the density of the pinning sites) $\xi_{\parallel} \sim |p - p_c|^{-\nu_{\parallel}}$ and $\xi_{\perp} \sim |p - p_c|^{-\nu_{\perp}}$

with

 $\nu_{\parallel} = 1.733$ and $\nu_{\perp} = 1.097$ (numerical results)

- The width of the interface: $w \cong \xi_{\perp}$
- Complete blocking of the interface when $\xi_{\parallel} = L$
- The width of the interface at the critical point: $L^{H} \sim w \cong \xi_{\perp} \sim |p - p_{c}|^{-\nu_{\perp}} \sim \xi_{\parallel}^{\frac{\nu_{\perp}}{\nu_{\parallel}}} \approx L^{\frac{\nu_{\perp}}{\nu_{\parallel}}} \rightarrow$

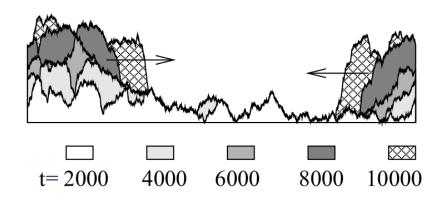
$$H = \frac{\nu_{\perp}}{\nu_{\parallel}} = 0.633$$

Directed percolation

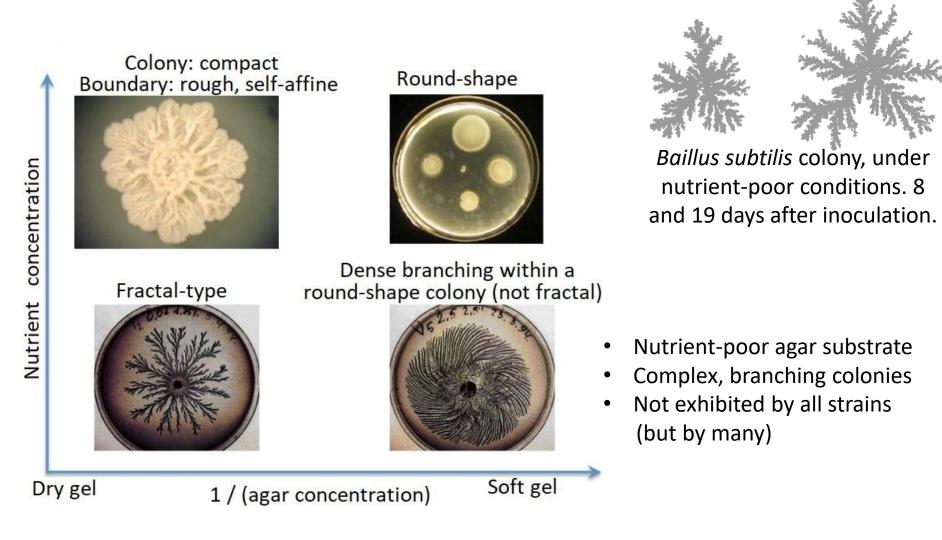
• The numerical result for the (discrete) directed percolation problem is *H*=0.633

– (complete blocking)

- Experimental results: *H*≈0.7-0.8
- Reason: the observed colonies have both blocked and freely moving parts → higher roughness exponent (H) than for the blocked interface.
 - Numerical simulations:
 H≈0.71-0.75
 (close to the observations)
- KPZ with quenched noise and the DP simulations have the same results

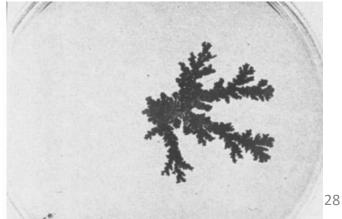


Branching morphology



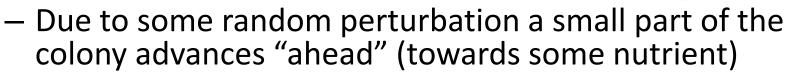
Branching morphology – colony formation

- Basic assumption:
 - the growth of the colony is *diffusion-limited*:
 - The multiplication of the bacteria is determined by the locally available nutrient
 - At the beginning: local nutrient is enough to maintain the growth
 - After some bacterial multiplication, nutrient deprivation progresses in and around the colony
 - Further growth depends on the diffusive transport from distant regions of the petri-dish
 - Experimental support
 - Non motile *B. subtilis* grows only towards nutrient-rich regions



Branching morphology – colony formation

- The speed of the growth is determined by the nutrient diffusion
- The colony develops towards the nutrient
- Instability:



- This part of the colony gets closer to the nutrient
- Can multiply faster
- This process stops at a certain curvature
 - Certain amount of neighboring cells are needed
 - A certain "steady shape" is set
- New perturbation: new branch

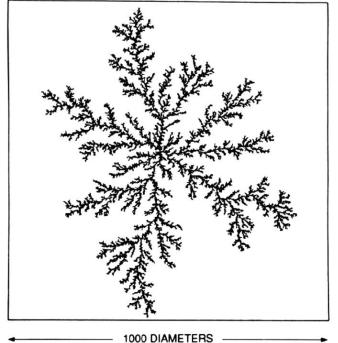
Nutrient

Diffusion-Limited Aggregation (DLA)

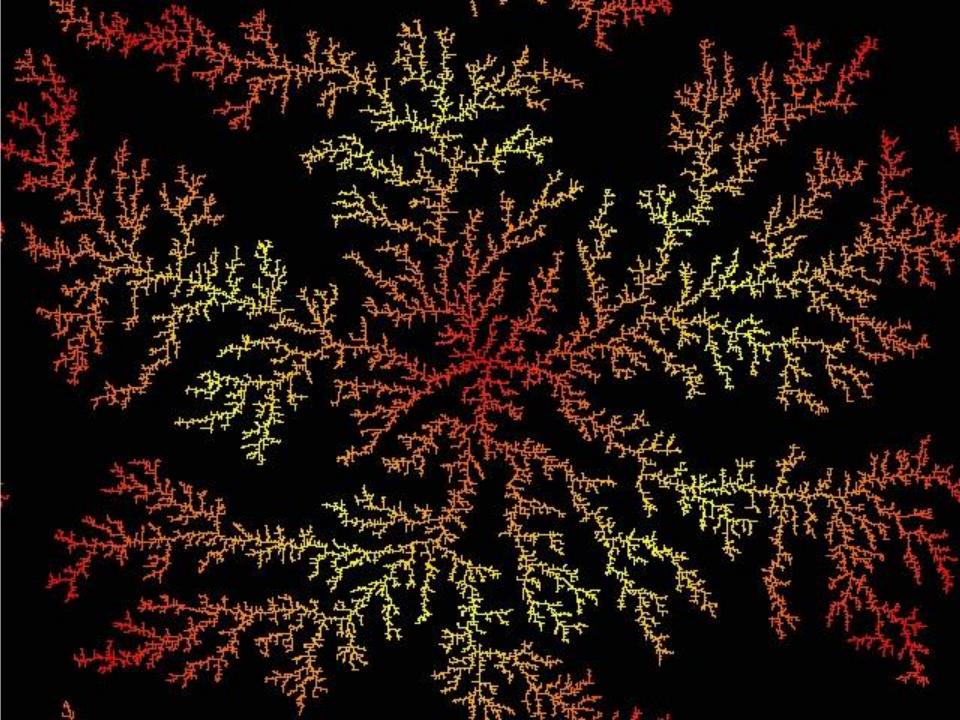
- The definition of the basic DLA algorithm:
 - Start: 1 cell
 - In each time step:
 - A particle (performing random walk) departs from infinity

(in simulations from finite distance)

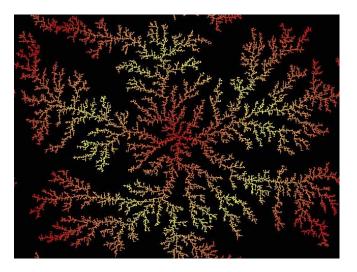
- Sticks to the colony upon graze
- Result: Fractal-type clusters

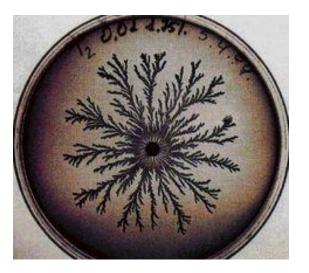


Typical DLA cluster with 50, 000 particles



Relation to bacterium colonies





- Random walk of the particle ~ diffusion of the nutrient
- Sticking to the colony ~ bacterium proliferation
- Non-motile bacteria!
- Very simple model (1 "nutrient-unit" = 1 multiplication) generating realistic formations → "universality"

Refinement of the DLA model – Modeling non-motile bacteria

- Assumptions:
 - Bacteria interact with each other
 - Each particle (cell) is characterized by
 - Space coordinate x_i
 - Energy state *E_i* (or cell cycle state)
 - $E_i < 0$: spore state. Without nutrient, remains in this state
 - $0 < E_i < 1$: right after multiplication
 - $E_i > 1$: has enough energy to multiply
- Notations:
 - ω_i : nutrient consumption rate
 - κ : conversion factor relating the maximal nutrient consumption rate with the shortest cell cycle time

(nutrient \rightarrow energy conversion)

ε : generic "maintenance" term (not directly contributing to growth)

The energy-level of bacterium *i*: uptake - consumption

$$\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon$$

Modeling non-motile bacteria – limits of the nutrient uptake

- Further notations:
 - ω_{max} : maximal nutrient uptake rate of the cells
 - κ : efficiency of the enzymatic reaction converting the nutrient into energy
 - c(x_i) : nutrient concentration (around cell i)
 - $\rho(x_i)$: local cell density
 - $\omega_0 c$: maximal diffusive transport from the substrate to the cell
 - ω_i : nutrient consumption rate (of bacterium *i*)
- The rate with which the cell-mass grows:

$$\rho(x_i)\omega_i = \min[\omega_{\max}\rho(x_i), \omega_0 c(x_i)]$$

→ The nutrient-uptake is limited by the enzymatic rates and local nutrient concentration (the maximal speed with which cell *i* can take in the nutrient)

Modeling non-motile bacteria – How the local nutrient concentration varies

- Bacteria use up the nutrient
- Changes in c are given by the diffusion equation with the appropriate sink terms at the position of the active particles:

$$\frac{dc}{dt} = D_c \nabla^2 c - \sum_i \omega_i \delta(x - x_i)$$

Diffusion

Diffusion

Sinks: the cell at location

 x_i consumes the nutrient

with rate ω_i

Summary: non-motile bacteria in nutrient-poor environment

(i) The energy-level of cell *i*

$$\left(\frac{dE_i}{dt} = \kappa \cdot \omega_i - \epsilon\right)$$

(ii) Cell-mass growth rate

$$\rho(x_i)\omega_i = \min[\omega_{max}\rho(x_i), \omega_0 c(x_i)]$$

(iii) Changes of the local nutrient concentration

$$\frac{dc}{dt} = D_c \nabla^2 c - \sum_i \omega_i \delta(x - x_i)$$

• E_i : energy level of cell *i*

- • κ : efficiency of the enzymatic reaction converting the nutrient into energy
- • ω_i : nutrient consumption rate

■ ε : generic "maintenance"
 term (not directly contributing to growth)

• $\rho(x_i)$: local cell density

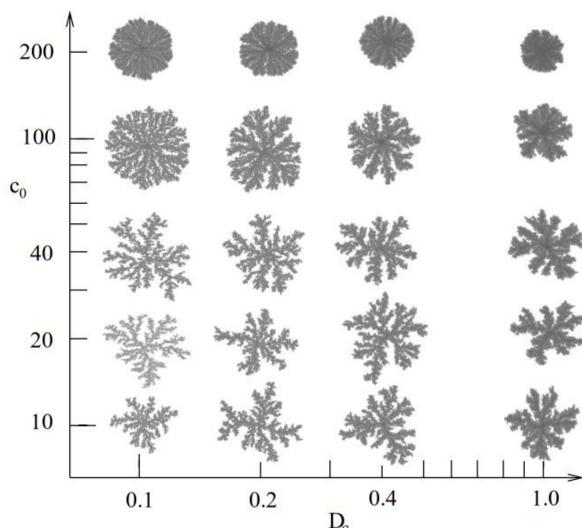
• ω_{max} : maximal nutrient uptake rate of the cells

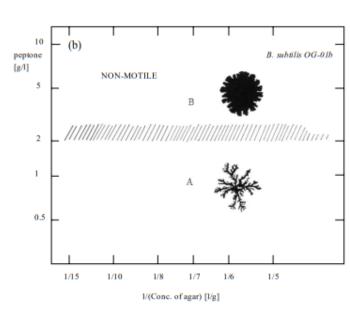
c(x_i) : nutrient concentration
 (around cell *i*)

• $\omega_0 c$: maximal diffusive transport from the substrate to the cell

• D_c : nutrient diffusivity

Results: Modeling non-motile bacteria with the refined DLA model





Related experiments: the morphology diagram of the non-motile B. subtilis OG-01b strain

Simulation results: Morphology diagram generated by the model with non-motile particles as a function of the initial nutrient concentration (c_0) and nutrient diffusivity (D_c). The colonies were grown (in the computer) until either their size or the number of bacteria reached a threshold value.

Motile bacteria with the DLA model

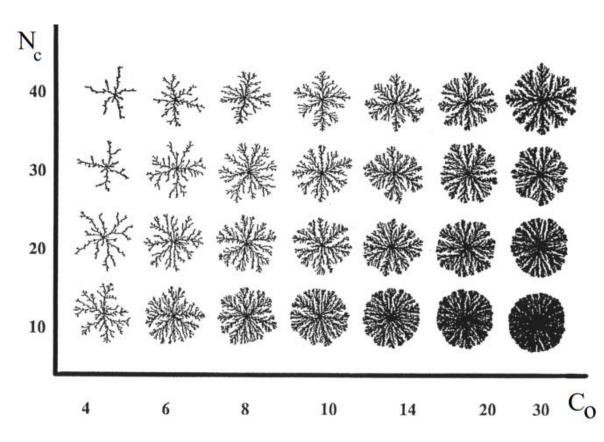
- Rules (i)-(iii) remain the same
 - (i) energy-level of cell *i*
 - (ii) cell-mass growth rate
 - (iii) changes of the local nutrient concentration
- Non-motile cells → self-affine surface
- Motile bacteria → smooth surface. But they still can not migrate on dry agar surface, only where some surfactant was secreted:
- New rules:
 - (iv) The active particles move randomly (with Brownian motion) within a boundary:

$$\frac{dx_i}{dt} = v_o \vec{e}$$

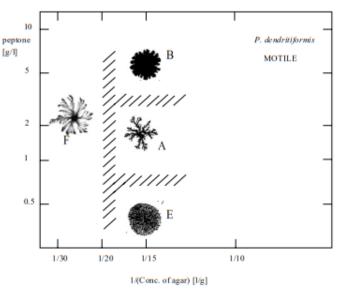
where \vec{e} is a unit vector pointing in a random direction

- (v) The propagation of the bacteria is assumed to be proportional to the local density of the active cells. Collisions of the particles with the boundary is counted, and when a threshold value (N_c) is reached, the neighboring cell is occupied as well. (the boundary shifts forward)

Results: Modeling motile bacteria with the refined DLA model (on hard agar gel)



Morphology diagram generated by the model with motile bacteria as the function of the initial nutrient concentration (C_o) and agar gel "hardness", (the threshold value N_c for the colony borderline displacement).



Corresponding experimental results: Morphology diagram of *Paenibacillus dendritiformis*.

Agreement with the model results within a limited region of the parameters, but it fails to predict the formation of the thin, straight radial branches at very low food concentrations. 39

Simulation results:

- Nice agreement with the experiments, but
- Fails to explain the transition between the

Fractal-type and non-fractal-type colonies

Solution: assuming repulsive chemotaxis signaling among the cells. Due to the repulsion the cells by-pass each other: the random Brownian motion becomes biased.

Simulation results without (a) and with (b) repulsive chemotaxis signaling.

